Dissemin is shutting down on January 1st, 2025

Published in

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Forest Systems, 3(24), p. e042

DOI: 10.5424/fs/2015243-07469

Links

Tools

Export citation

Search in Google Scholar

Forest structure of Mediterranean yew (Taxus baccata L.) populations and neighbor effects on juvenile yew performance in the NE Iberian Peninsula

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Aim of study: In the Mediterranean region, yew ( Taxus baccata L.) usually grows with other tree species in mixed forests. Yew recruitment and juvenile growth may depend on the structure of the forest and the net balance between competition for soil water and nutrients with neighbors and facilitation that these neighbors exert by protecting the plants from direct sun exposure. This study aims, at a regional scale, to analyze the structure of forests containing yew, and, on an individual level, to analyze the effect of the surrounding vegetation structure on the performance of yew juveniles. Area of study: The structural typologies of yew populations were defined based on field inventories conducted in 55 plots distributed in 14 localities in the North-Eastern (NE) Iberian Peninsula, covering a wide range of yew distribution in the area. In a second step, an analysis of neighboring species' effects on juveniles was conducted based on the data from 103 plots centered in yew juveniles in five localities. Main Results: A cluster analysis classified the inventoried stands into four forest structural types: two multi-stratified forests with scattered yew and two yew groves. Multiple regression modeling showed that the δ 13 C measured in last year's leaves positively relates to the basal area of conifer neighbors, but negatively with the cover of the yew crown by other trees. Research highlights: At a stand-level, the density of recruits and juveniles (625 ± 104 recruits ha -1 , 259 ± 55 juveniles ha -1 ) in mixed forests was found to be higher than that on yew dominant stands (181 ± 88 recruits ha -1 and 57 ± 88 juveniles ha -1 ). At an individual-level, the water stress (estimated from leaf δ 13 C) of yew juveniles seems alleviated by the crown cover by neighbors while it increases with the basal area of conifers. Yew conservation should focus on selective felling for the reduction of basal area of neighbors surrounding the target tree, but avoid affecting the canopy cover to contribute to enhanced yew juvenile growth. Keywords: Biodiversity conservation; δ 13 C; forest management; plant-plant interaction; recruitment; Taxus baccata ; water use efficiency.