Published in

American Geophysical Union, Geophysical Research Letters, 10(39), p. n/a-n/a, 2012

DOI: 10.1029/2012gl051942

Links

Tools

Export citation

Search in Google Scholar

Sensitivity of an Earth system climate model to idealized radiative forcing: SENSITIVITY OF AN EARTH SYSTEM MODEL

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We diagnose forcing and climate feedbacks in benchmark sensitivity experiments with the new Met Office Hadley Centre Earth system climate model HadGEM2-ES. To identify the impact of newly-included biogeophysical and chemical processes, results are compared to a parallel set of experiments performed with these processes switched off, and different couplings with the biogeochemistry. In abrupt carbon dioxide quadrupling experiments we find that the inclusion of these processes does not alter the global climate sensitivity of the model. However, when the change in carbon dioxide is uncoupled from the vegetation, or when the model is forced with a non-carbon dioxide forcing - an increase in solar constant - new feedbacks emerge that make the climate system less sensitive to external perturbations. We identify a strong negative dust-vegetation feedback on climate change that is small in standard carbon dioxide sensitivity experiments due to the physiological/fertilization effects of carbon dioxide on plants in this model. Citation: Andrews, T., M. A. Ringer, M. Doutriaux-Boucher, M. J. Webb, and W. J. Collins (2012), Sensitivity of an Earth system climate model to idealized radiative forcing, Geophys. Res. Lett., 39, L10702, doi:10.1029/2012GL051942.