Published in

Wiley, Journal of Neurochemistry, 1(74), p. 302-309, 2001

DOI: 10.1046/j.1471-4159.2000.0740302.x

Links

Tools

Export citation

Search in Google Scholar

Formation of the Base Modification 8-Hydroxyl-2′ - Deoxyguanosine and DNA Fragmentation Following Seizures Induced by Systemic Kainic Acid in the Rat

Journal article published in 2000 by Jing Lan, David C. Henshall ORCID, Roger P. Simon, Jun Chen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The formation of oxidative DNA damage as a consequence of seizures remains little explored. We therefore investigated the regional and temporal profile of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) formation, a hallmark of oxidative DNA damage and DNA fragmentation in rat brain following seizures induced by systemic kainic acid (KA). Formation of 8-OHdG was determined via HPLC with electrochemical detection, and single- and double-stranded DNA breaks were detected using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl-transferase-mediated nick end-labeling (TUNEL), respectively. Systemic KA (11 mg/kg) significantly increased levels of 8-OHdG within the thalamus after 2 h, within the amygdala/piriform cortex after 4 h, and within the hippocampus after 8 h. Levels remained elevated up to sevenfold within these areas for 72 h. Smaller increases in 8-OHdG levels were also detected within the parietal cortex and striatum. PANT-positive cells were detected within the thalamus, amygdala/piriform cortex, and hippocampus 24-72 h following KA injection. TUNEL-positive cells appeared within the same brain regions and over a similar time course (24-72 h) but were generally lower in number. The present data suggest oxidative damage to DNA may be an early consequence of epileptic seizures and a possible initiation event in the progression of seizure-induced injury to DNA fragmentation and cell death.