Taylor and Francis Group, International Journal of Geographical Information Science, 6(19), p. 623-637, 2005
DOI: 10.1080/13658810500104799
Full text: Unavailable
Environmental modelling languages provide the possibility to construct models in two or three spatial dimensions. These models can be static models, without a time component, or dynamic models. Dynamic models are simulations run forward in time, where the state of the model at time t is defined as a function of its state in a period or time step preceding t. Since inputs and parameters of environmental models are associated with errors, environmental modelling languages need to provide techniques to calculate how these errors propagate to the output(s) of the model. Since these techniques are not yet available, the paper describes concepts for extending an environmental-modelling language with functionality for error-propagation modelling. The approach models errors in inputs and parameters as stochastic variables, while the error in the model outputs is approximated with a Monte Carlo simulation. A modelling language is proposed which combines standard functions in a structured script (program) for building environmental models, and calculation of error propagation in these models. A prototype implementation of the language is used in three example models to illustrate the concepts.