Published in

Elsevier, Optical Materials, (39), p. 58-68, 2015

DOI: 10.1016/j.optmat.2014.10.065

Links

Tools

Export citation

Search in Google Scholar

Unsymmetrical and symmetrical azines toward application in organic photovoltaic

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The unsymmetrical and symmetrical azines prepared by condensation of benzophenone hydrazone with (di)aldehydes with thiophene rings were reported in this study The structures of obtained compounds were characterized by FTIR, 1H NMR, and 13C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of azines were investigated. The unsymmetrical azine with bithiophene unit exhibited liquid crystalline properties as was detected by DSC and POM experiments. All compounds are electrochemically active, however, only azines with bithiophene structure undergo reversible reduction process as was found in cyclic and differential pulse voltammetry (CV and DPV) studies. Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). The photovoltaic properties of two azines as active layer in organic solar cells at the configuration ITO/PEDOT:PSS/active layer/Al under an illumination of 1.3 mW/cm2 were studied. Active cell layers blends of poly 3-hekxylthiophene (P3HT) or poly 3-butylthiophene (P3OT) with azines were applied. The device comprising P3HT with symmetrical azine containing bithiophene unit showed the highest value of power conversion efficiency (0.82%). To the best of our knowledge, the azines are very seldom considered as potential compounds in active layer in bulk heterojunction (BHJ) solar cells.