Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Environmental Science and Technology, 16(47), p. 9102-9108, 2013

DOI: 10.1021/es401599r

Links

Tools

Export citation

Search in Google Scholar

Source Forensics of Black Carbon Aerosols from China

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The limited understanding of black carbon (BC) aerosol emissions from incomplete combustion causes a poorly constrained anthropogenic climate warming that globally may be second only to CO2 and regionally, such as over East Asia, the dominant driver of climate change. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain as fossil BC is a stronger climate forcer. The source apportionment is the underpinning for targeted mitigation actions. However, technology-based "bottom-up" emission inventories are inconclusive, largely due to uncertain BC emission factors from small-scale/household combustion and open burning. We use "top-down" radiocarbon measurements of atmospheric BC from five sites including 3 city sites and 2 regional sites to determine that fossil fuel combustion produces 80±6% of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all fifteen BC emission inventory models, including one with monthly resolution. Our results suggest that current climate modelling should refine both BC emission strength and consider the stronger radiative absorption associated with fossil-fuel-derived BC. To mitigate near-term climate effects and improve air quality in East Asia, activities such as residential coal combustion and city traffic should be targeted.