Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Physical Oceanography, 10(43), p. 2054-2070, 2013

DOI: 10.1175/jpo-d-12-0157.1

Links

Tools

Export citation

Search in Google Scholar

Variability of Warm Deep Water Inflow in a Submarine Trough on the Amundsen Sea Shelf

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The ice shelves in the Amundsen Sea are thinning rapidly, and the main reason for their decline appears to be warm ocean currents circulating below the ice shelves and melting these from below. Ocean currents transport warm dense water onto the shelf, channeled by bathymetric troughs leading to the deep inner basins. A hydrographic mooring equipped with an upward-looking ADCP has been placed in one of these troughs on the central Amundsen shelf. The two years (2010/11) of mooring data are here used to characterize the inflow of warm deep water to the deep shelf basins. During both years, the warm layer thickness and temperature peaked in austral fall. The along-trough velocity is dominated by strong fluctuations that do not vary in the vertical. These fluctuations are correlated with the local wind, with eastward wind over the shelf and shelf break giving flow toward the ice shelves. In addition, there is a persistent flow of dense lower Circumpolar Deep Water (CDW) toward the ice shelves in the bottom layer. This bottom-intensified flow appears to be driven by buoyancy forces rather than the shelfbreak wind. The years of 2010 and 2011 were characterized by a comparatively stationary Amundsen Sea low, and hence there were no strong eastward winds during winter that could drive an upwelling of warm water along the shelf break. Regardless of this, there was a persistent flow of lower CDW in the bottom layer during the two years. The average heat transport toward the ice shelves in the trough was estimated from the mooring data to be 0.95 TW.