Published in

Wiley, Chemistry - A European Journal, 42(20), p. 13603-13617, 2014

DOI: 10.1002/chem.201402229

Links

Tools

Export citation

Search in Google Scholar

CNN Pincer Ruthenium Catalysts for Hydrogenation and Transfer Hydrogenation of Ketones: Experimental and Computational Studies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2P(CH2)4PPh2) with NaOCH2CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2CF3)(dppb)] (1-OCH2CF3), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2) of ketones to alcohols (turnover frequency (TOF) up to 6.5×104 h−1, 40 °C). DFT calculations were performed on the reaction of [RuH(CNN′)(dmpb)] (2-H) (HCNN′=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2P(CH2)4PMe2) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key “amide” intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2; both pathways have low barriers and are alcohol assisted.