Published in

American Institute of Physics, The Journal of Chemical Physics, 13(141), p. 134708, 2014

DOI: 10.1063/1.4897205

Links

Tools

Export citation

Search in Google Scholar

Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: A path to ambipolar organic-based materials?

Journal article published in 2014 by J. C. Sancho García ORCID, A. J. Pérez Jiménez
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We have carefully investigated the structural and electronic properties of coronene and some of its fluorinated and chlorinated derivatives, including full periphery substitution, as well as the preferred orientation of the non-covalent dimer structures subsequently formed. We have paid particular attention to a set of methodological details, to first obtain single-molecule magnitudes as accurately as possible, including next the use of modern dispersion-corrected methods to tackle the corresponding non-covalently bound dimers. Generally speaking, this class of compounds is expected to self-assembly in neighboring π-stacks with dimer stabilization energies ranging from -20 to -30 kcal mol(-1) at close distances around 3.0-3.3 Å. Then, in a further step, we have also calculated hole and electron transfer rates of some suitable candidates for ambipolar materials, and corresponding charge mobility values, which are known to critically depend on the supramolecular organization of the samples. For coronene and per-fluorinated coronene, we have found high values for their hopping rates, although slightly smaller for the latter due to an increase (decrease) of the reorganization energies (electronic couplings).