Published in

Springer Verlag, Advances in Intelligent Systems and Computing, p. 63-70, 2014

DOI: 10.1007/978-3-319-01568-2_9

Links

Tools

Export citation

Search in Google Scholar

Prediction of Potential Kinase Inhibitors in Leishmania spp. through a Machine Learning and Molecular Docking Approach

Journal article published in 2014 by Rodrigo Ochoa ORCID, Mark Davies, Andrés Flórez ORCID, Jairo Espinosa, Carlos Muskus
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Currently, tropical diseases are a major research objective in biomedical sciences due to the overall impact on vulnerable populations ignored by pharmaceutical companies. For that reason, the search for new therapeutic treatments is essential in the fight against tropical parasites such as Leishmania spp. The proposed approach will involve collecting the set of kinases from both the parasite and other organisms (except human), attempting to identify compounds and approved drugs, which are selective to the parasite, based on in silico methodologies. ChEMBL, Therapeutic Target Database (TTD) and DrugBank were used as sources for a list of compounds and kinase drug targets, which were represented using fingerprints based on patterns detected in the protein sequence, and a set of descriptors based on physic-chemical properties of the catalytic domains. The enzymes were used as a training set for a Support Vector Machine in conjunction with Feature Selection techniques, looking to predict druggable kinases, found in five sequenced Leishmania species. Following the target selection, a list of compounds was inferred and filtered according to some cheminformatics protocols. Finally, to support the predictions, some Leishmania kinases and their associated compounds were 3D modeled, and docked to each other according to a consensus docking schema based on the open packages AutoDock 4, AutoDockVina and DOCK.