Published in

American Meteorological Society, Bulletin of the American Meteorological Society, 6(93), p. 861-878, 2012

DOI: 10.1175/bams-d-11-00189.1

Links

Tools

Export citation

Search in Google Scholar

RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.