Published in

SAGE Publications, Applied Spectroscopy, 7(69), p. 794-801, 2015

DOI: 10.1366/14-07733

Links

Tools

Export citation

Search in Google Scholar

Application of Photoreactive Barium Titanate (BaTiO3) Beam Fanning to the Photothermal Mirror Technique: An Experimental Analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An adaptive spatial filter is used as an optical novelty filter to detect photothermal mirror (PM) signals in high absorbing materials using continuous wave laser excitation. The optical novelty filter uses an optical beam-fanning limiter based on single domain barium titanate (BaTiO3), cut and poled 45° relative to the c-axis. The optical novelty filter approach relaxes the requirement for high sample surface smoothness because the effect aperture adapts to the surface, reducing the stationary background from the optical signal and provides a means of developing the photothermal mirror signal. Time-dependent probe laser phase shifts due to photothermal surface deformation pass through the optical novelty filter and are detected as an intensity increase over the stationary or “mundane” signal. Experimental studies are performed using four well-characterized metals using both the conventional photothermal mirror and optical novelty filter apparatuses in order to understand the complicated signal behavior. Signal behavior is analyzed in different excitation intervals using pseudo-chopped sample excitation with different duty cycles. Optical novelty filter signals show fast response for changes in the spatial beam profile followed by long relaxation time. Reasons for the optical novelty filter response are described.