Published in

Elsevier, Journal of Molecular Catalysis B: Enzymatic, (109), p. 24-30, 2014

DOI: 10.1016/j.molcatb.2014.07.012

Links

Tools

Export citation

Search in Google Scholar

Enzymatic oxidative dimerization of silymarin flavonolignans

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dimerization of phenolic compounds can potentially enhance their biological (antioxidant) activity. We present here the selective oxidative dimerization of several flavonolignans from Silybum marianum seed extract, namely, silybin A (1a), silybin B (1b), silychristin (3), and silydianin (4) catalyzed by a laccase from Trametes versicolor. Selective benzylation of C-7 OH group of both silybins ensured the priority of the dimerization reaction, avoiding thus polymerization. C-C homodimers connected via E-rings of silybin A and B and silydianin dimers were successfully isolated after respective debenzylation. On the contrary, dimerization of 7-O-benzyl silychristin afforded a complex, inseparable mixture of the products. All isolated flavonolignan dimers exhibited significantly improved 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity compared to their monomers and, therefore, seem to be promising for further biological studies.