Elsevier, Earth and Planetary Science Letters, 1-2(301), p. 213-221
DOI: 10.1016/j.epsl.2010.11.001
Full text: Download
To investigate the behavior of Li during low-grade metamorphism and fluid flux in an accretionary prism we measured the Li concentrations ([Li]) and isotopic compositions (δ7Li) of sub-greenschist and greenschist-facies Otago Schist composites, as well as cross-cutting quartz veins, which are interpreted to have precipitated from slab-derived fluids. The average [Li] of sub-greenschist facies composites (41 ± 13 μg/g, 2σ) is statistically distinct (97% confidence level, student t test) to that of greenschist facies composites (34 ± 9 μg/g, 2σ), which have experienced mass addition of silica in the form of quartz veins having [Li] between 0.4-2.3 μg/g. A linear regression of the correlation between [Li] and calculated mass additions suggests that the depletion of [Li] in greenschist facies composites is due to both dilution from the addition of the quartz veins, as well as metamorphic dehydration. The [Li] of both groups of composites correlates with their CIA (Chemical Index of Alteration) values (50-58), which are low, consistent with the inferred graywacke protolith of the Otago Schist. The δ7Li of sub-greenschist and greenschist facies composites are remarkably constant, with an average δ7Li of 0.2 ± 1.7 (2σ) and −0.5 ± 1.9 (2σ), respectively, and comparable to that of the average upper continental crust. Thus, metamorphism has had no discernable effect on δ7Li in these samples. The Li isotopic signature of the schists is similar to that seen in pelitic sedimentary rocks and likely reflects the δ7Li of the protoliths. The surprisingly light δ7Li of the quartz veins (−2.8 to −1.4) likely records kinetic fractionation associated with Li ingress into the veins from surrounding wallrock.