Published in

Elsevier, Neurobiology of Disease, 2(18), p. 323-335, 2005

DOI: 10.1016/j.nbd.2004.10.005

Links

Tools

Export citation

Search in Google Scholar

l-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain

Journal article published in 2005 by E. Bezard ORCID, C. E. Gross, Li Qin, V. V. Gurevich, J. L. Benovic, E. V. Gurevich
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Dysregulation of dopamine receptors (DARs) is believed to contribute to Parkinson disease (PD) pathology. G protein-coupled receptors (GPCR) undergo desensitization via activation-dependent phosphorylation by G protein-coupled receptor kinases (GRKs) followed by arrestin binding. Using quantitative Western blotting, we detected profound differences in the expression of arrestin2 and GRKs among four experimental groups of nonhuman primates: (1) normal, (2) parkinsonian, (3) parkinsonian treated with levodopa without or (4) with dyskinesia. Arrestin2 and GRK6 expression was significantly elevated in the MPTP-lesioned group in most brain regions; GRK2 was increased in caudal caudate and internal globus pallidus. Neither levodopa-treated group differed significantly from control. The only dyskinesia-specific change was an elevation of GRK3 in the ventral striatum of the dyskinetic group. Changes in arrestin and GRK expression in the MPTP group were accompanied by enhanced ERK activation and elevated total ERK expression, which were also reversed by L-DOPA. The data suggest the involvement of arrestins and GRKs in Parkinson disease pathology and the effects of levodopa treatment.