Published in

Springer Verlag, Reviews of Physiology Biochemistry and Pharmacology, p. 87-103

DOI: 10.1007/s10254-003-0016-y

Links

Tools

Export citation

Search in Google Scholar

The role of SHIP in cytokine-induced signaling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The phosphatidylinositol (PI)-3 kinase (PI3K) pathway plays a central role in regulating many biological processes via the generation of the key second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P3). This membrane-associated phospholipid, which is rapidly, albeit transiently, synthesized from PI-4,5-P2 by PI3K in response to a diverse array of extracellular stimuli, attracts pleckstrin homology (PH) domain-containing proteins to membranes to mediate its many effects. To ensure that the activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed tumor suppressor PTEN hydrolyzes PI-3,4,5-P3 back to PI-4,5-P2 while the 145-kDa hemopoietic-restricted SH2-containing inositol 5'- phosphatase, SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP (sSHIP) and the more widely expressed 150-kDa SHIP2 hydrolyze PI-3,4,5-P3 to PI-3,4-P2. In this review we will concentrate on the properties of the three SHIPs, with special emphasis being placed on the role that SHIP plays in cytokine-induced signaling.