Elsevier, Journal of Magnetism and Magnetic Materials, (388), p. 40-44, 2015
DOI: 10.1016/j.jmmm.2015.04.009
Full text: Download
Mesoporous CoFe2O4 nanospheres with an average size of 180 nm were fabricated via a facile hydrothermal process using ethylene glycol as solvent and sodium acetate (NaAc) as electrostatic stabilizer. In this method, ethylene glycol plays a vital role in the formation of cobalt nanoospheres as a solvent and reducing agent. The structure and morphology of the prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nanospheres exhibited ferromagnetic properties with high saturation magnetization value of about 60.19 emu/g at room temperature. The BET surface area of the nanospheres was determined using the nitrogen absorption method. The porous CoFe2O4 nanospheres displayed good magnetic properties, which may provide a very promising candidate for their applications in target drug delivery.