Published in

American Physical Society, Physical review B, 1(73)

DOI: 10.1103/physrevb.73.014105

Links

Tools

Export citation

Search in Google Scholar

High-pressure phases inSnO2to 117 GPa

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

X-ray diffraction of SnO2 (cassiterite) at high pressures and temperatures demonstrates the existence of four phase transitions to 117 GPa. The observed sequence of phases for SnO2 is rutile-type (P42∕mnm)→CaCl2-type(Pnnm)→pyrite-type(Pa3̅ )→ZrO2 orthorhombic phase I (Pbca)→cotunnite-type (Pnam). Our observations of the first three phases are generally in agreement with earlier studies. The orthorhombic phase I and cotunnite-type structure (orthorhombic phase II) were observed in SnO2 for the first time. The Pbca phase is found at 50–74 GPa during room-temperature compression. The cotunnite-type structure was synthesized when SnO2 was compressed to 74 GPa and heated at 1200 K. The cotunnite-type form was observed during compression between 54–117 GPa with additional laser heating carried out at 91 and 111 GPa. Fitting the pressure-volume data for the high-pressure phases to the second-order Birch-Murnaghan equation of state yields a bulk modulus of 259(26) GPa for the Pbca phase and 417(7) GPa for the cotunnite-type phase.