Society for Neuroscience, Journal of Neuroscience, 10(33), p. 4456-4467, 2013
DOI: 10.1523/jneurosci.3491-12.2013
Full text: Download
Inner hair cells (IHCs) of the cochlea use ribbon synapses to transmit auditory information faithfully to spiral ganglion neurons (SGNs). In the present study, we used genetic disruption of the presynaptic scaffold protein bassoon in mice to manipulate the morphology and function of the IHC synapse. Although partial-deletion mutants lacking functional bassoon (BsnΔEx4/5) had a near-complete loss of ribbons from the synapses (up to 88% ribbonless synapses), gene-trap mutants (Bsngt) showed weak residual expression of bassoon and 56% ribbonless synapses, whereas the remaining 44% had a loosely anchored ribbon. Patch-clamp recordings and synaptic CaV1.3 immunolabeling indicated a larger number of Ca2+channels for BsngtIHCs compared with BsnΔEx4/5IHCs and for Bsngtribbon-occupied versus Bsngtribbonless synapses. An intermediate phenotype of BsngtIHCs was also found by membrane capacitance measurements for sustained exocytosis, but not for the size of the readily releasable vesicle pool. The frequency and amplitude of EPSCs were reduced in BsnΔEx4/5mouse SGNs, whereas their postsynaptic AMPA receptor clusters were largely unaltered. Sound coding in SGN, assessed by recordings of single auditory nerve fibers and their population responsesin vivo, was similarly affected in Bsngtand BsnΔEx4/5mice. Both genotypes showed impaired sound onset coding and reduced evoked and spontaneous spike rates. In summary, reduced bassoon expression or complete lack of full-length bassoon impaired sound encoding to a similar extent, which is consistent with the comparable reduction of the readily releasable vesicle pool. This suggests that the remaining loosely anchored ribbons in BsngtIHCs were functionally inadequate or that ribbon independent mechanisms dominated the coding deficit.