Published in

American Society for Pharmacology and Experimental Therapeutics (ASPET), The Journal of Pharmacology and Experimental Therapeutics, 3(320), p. 1078-1086, 2006

DOI: 10.1124/jpet.106.116004

Links

Tools

Export citation

Search in Google Scholar

Single Exposure to a Serotonin 1A Receptor Agonist, (+)8-Hydroxy-2-(di-n-propylamino)-tetralin, Produces a Prolonged Heterologous Desensitization of Serotonin 2A Receptors in Neuroendocrine Neurons in Vivo

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We previously demonstrated colocalization of serotonin 1A (5-HT(1A)) and serotonin 2A (5-HT(2A)) receptors in oxytocin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus (PVN). Because a functional imbalance between hypothalamic 5-HT(1A) and 5-HT(2A) receptors has been implicated in several neuropsychiatric disorders, in this study we investigated whether acute in vivo activation of 5-HT(1A) receptors in the PVN results in desensitization of 5-HT(2A) receptor signaling. Functional desensitization of hypothalamic 5-HT(2A) receptors was assessed via a reduction in oxytocin and adrenocorticotropin (ACTH) responses to the 5-HT(2A/2C) receptor agonist (-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl [(-)DOI]. We report here that a single systemic injection of the 5-HT(1A) receptor agonist (+)-8-hydroxy-2-(di-n-propylamino)-tetralin [(+)8-OH-DPAT] (200 microg/kg) significantly reduced the 5-HT(2A) receptor-mediated oxytocin responses for at least 72 h. Direct intraparaventricular injection of (+)8-OH-DPAT (0.2 nmol) 24 h before a submaximal dose of (-)DOI (0.35 mg/kg) significantly inhibited the 5-HT(2A) receptor-mediated increases in both oxytocin and ACTH (-39 and -16%, respectively). In addition, the (+)8-OH-DPAT-induced desensitization of the 5-HT(2A) receptor-mediated oxytocin but not the ACTH response was inhibited in rats pretreated with either a systemic (0.1 mg/kg) or intraparaventricular (10 nmol) injection of the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635). This is the first in vivo demonstration of a prolonged heterologous intracellular desensitization of 5-HT(2A) receptors after acute activation of 5-HT(1A) receptors. These findings may provide insight into the long-term heterologous interactions between 5-HT(1A) and 5-HT(2A) receptor signaling that could occur in response to antidepressants, antipsychotics, or drugs of abuse that target these receptor subtypes.