Published in

Wiley, Human Mutation: Variation, Informatics and Disease, 6(27), p. 575-582, 2006

DOI: 10.1002/humu.20338

Links

Tools

Export citation

Search in Google Scholar

m.6267G>A: a recurrent mutation in the human mitochondrial DNA that reduces cytochrome c oxidase activity and is associated with tumors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Complete sequencing of the mitochondrial genome of 13 cell lines derived from a variety of human cancers revealed nine novel mitochondrial DNA (mtDNA) variations. One of them, m.6267G>A, is a recurrent mutation that introduces the Ala122Thr substitution in the mitochondrially encoded cytochrome c oxidase I (MT-CO1): p.MT-CO1: Ala122Thr (GenBank: NP_536845.1). Biochemical analysis of the original cell lines and the transmitochondrial cybrids generated by transferring mitochondrial DNAs to a common nuclear background, indicate that cytochrome c oxidase (COX) activity, respiration, and growth in galactose are impaired by the m.6267G>A mutation. This mutation, found twice in the cancer cell lines included in this study, has been also encountered in one out of 63 breast cancer samples, one out of 64 colon cancer samples, one out of 260 prostate cancer samples, and in one out of 15 pancreatic cancer cell lines. In all instances the m.6267G>A mutation was associated to different mtDNA haplogroups. These findings, contrast with the extremely low frequency of the m.6267G>A mutation in the normal population (1:2264) and its apparent absence in other pathologies, strongly suggesting that the m.6267G>A missense mutation is a recurrent mutation specifically associated with cancer.