Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Carbon, (81), p. 497-504

DOI: 10.1016/j.carbon.2014.09.082

Links

Tools

Export citation

Search in Google Scholar

High strength measurement of monolayer graphene oxide

Journal article published in 2015 by Changhong Cao, Matthew Daly ORCID, Chandra Veer Singh ORCID, Yu Sun ORCID, Tobin Filleter
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, the strength of monolayer graphene oxide membranes was experimentally characterized. The monolayer GO membranes were found to have a high carbon-to-oxygen ratio (similar to 4:1) and an average strength of 17.3 N/m (24.7 GPa). This measured strength is orders of magnitude higher than previously reported values for graphene oxide paper and is approximately 50% of the 2D intrinsic strength of pristine graphene. In order to corroborate strength measurements, experimental values were compared to theoretical first-principles calculations. Using a supercell constructed from experimental measurements of monolayer graphene oxide chemistry and functional structure, density functional theory calculations predicted a theoretical strength of 21.9 N/m (31.3 GPa) under equibiaxial tension, in good agreement with the experimental data. Furthermore, computational simulations were used to understand the underlying fracture mechanism, in which bond cleavage occurred along a path connecting oxygenated carbon atoms in the basal plane. This work shows that monolayer graphene oxide possesses near-theoretical strength reaching tens of GPa.