Published in

Elsevier, Biosensors and Bioelectronics, 7(22), p. 1317-1322, 2007

DOI: 10.1016/j.bios.2006.05.034

Links

Tools

Export citation

Search in Google Scholar

Enzyme electrodes based on sono-gel containing ferrocenyl compounds

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An amperometric-mediated glucose sensor has been developed by employing a silica sono-gel carbon composite electrode (SCC). The chosen mediators, ferrocene (Fc) and 1,2-diferrocenylethane (1), have been immobilized in the sono-gel composite matrix. The complex 1 has been employed for the first time as an electron transfer mediator for signal transduction from the active centre of the enzyme to the electrode conductive surface. After the optimisation of the construction procedure the best operative conditions for the analytical performance of the biosensor have been investigated in terms of pH, temperature and applied potential. Cyclic voltammetric and amperometric measurements have been used to study the response of both the glucose sensors, which exhibit a fast response and good reproducibility. The sensitivity to glucose is quite similar (6.7+/-0.1 microA/mM versus 5.3+/-0.1 microA/mM) when either Fc or 1 are used as mediators as are the detection limit ca. 1.0 mM (S/N=3) and the range of linear response (up to 13.0 mM). However, the dynamic range for glucose determination results wider when using 1 (up to 25.0 mM). The apparent Michaelis-Menten constants, calculated from the reciprocal plot under steady state conditions, are 27.7 and 31.6 mM for SCC-Fc/GOx and SCC-1/GOx electrodes, respectively, in agreement with a slightly higher electrocatalytic efficiency for the mediator 1.