Published in

Elsevier, Autonomic Neuroscience: Basic and Clinical, 1-2(108), p. 50-56, 2003

DOI: 10.1016/j.autneu.2003.08.006

Links

Tools

Export citation

Search in Google Scholar

Ovarian blood flow responses to electro-acupuncture stimulation at different frequencies and intensities in anaesthetized rats

Journal article published in 2003 by Elisabet Stener-Victorin ORCID, Rie Kobayashi, Mieko Kurosawa
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The purpose of the present study was to investigate changes in ovarian blood flow (OBF) in response to electro-acupuncture (EA) stimulation at different frequencies and intensities in anaesthetized rats. Whether the ovarian sympathetic nerves were involved in OBF responses was elucidated by severance of the ovarian sympathetic nerves. In addition, how changes in the systemic circulation affected OBF was evaluated by continuously recording blood pressure. OBF was measured on the surface of the left ovary using laser Doppler flowmeter. Acupuncture needles with a diameter of 0.3 mm were inserted bilaterally into the abdominal and the hindlimb muscles and connected to an electrical stimulator. Two frequencies-2 Hz (low) and 80 Hz (high)-with three different intensities-1.5, 3, and 6 mA-were applied for 35 s. Both low- and high-frequency EA at 1.5 mA and high-frequency EA at 3 mA had no effect on OBF or mean arterial blood pressure (MAP). Low-frequency EA at 3 and 6 mA elicited significant increases in OBF. In contrast, high-frequency EA with an intensity of 6 mA evoked significant decreases in OBF, followed by decreases in MAP. After severance of the ovarian sympathetic nerves, the increases in the OBF responses to low-frequency EA at 3 and 6 mA were totally abolished, and the responses at 6 mA showed a tendency to decrease, probably because of concomitant decreases in MAP. The decreased OBF and MAP responses to high-frequency EA at 6 mA remained after the ovarian sympathectomy, and the difference in the responses before and after ovarian sympathectomy was nonsignificant. In conclusion, the present study showed that low-frequency EA stimulation increases OBF as a reflex response via the ovarian sympathetic nerves, whereas high-frequency EA stimulation decreases OBF as a passive response following systemic circulatory changes.