Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Journal of Cell Science, 8(113), p. 1415-1426, 2000

DOI: 10.1242/jcs.113.8.1415

Links

Tools

Export citation

Search in Google Scholar

Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The spatial and temporal activity of the actin cytoskeleton is precisely regulated during cell motility by several microfilament-associated proteins of which profilin plays an essential role. We have analysed the distribution of green fluorescent protein (GFP)-tagged profilins in cultured and in Listeria-infected cells. Among the different GFP-profilin fusion proteins studied, only the construct in which the GFP moiety was fused to the carboxy terminus of profilin II (profilin II-GFP) was recruited by intracellular Listeria. The in vitro ligand-binding properties of this construct, e.g. the binding to monomeric actin, poly-L-proline and phosphatidylinositol 4,5-bisphosphate (PIP2), were unaffected by GFP. Profilin II-GFP co-localised with vinculin and Mena to the focal adhesions in REF-52 fibroblasts and was distributed as a thin line at the front of protruding lamellipodia in B16-F1 mouse melanoma cells. In Listeria-infected cells, profilin II-GFP was recruited, in an asymmetric fashion, to the surface of Listeria at the onset of motility whereas it was not detectable on non-motile bacteria. In contrast to the vasodilator-stimulated phosphoprotein (VASP), profilin II-GFP localised at the bacterial surface only on motile Listeria. Moreover, the fluorescence intensity of profilin II-GFP directly correlated with the speed of the bacteria. Thus, the use of GFP-tagged profilin II provides new insights into the role of profilins in cellular motility.