Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Analytical Biochemistry, 2(289), p. 246-250, 2001

DOI: 10.1006/abio.2000.4942

Links

Tools

Export citation

Search in Google Scholar

A Fluorimetric Method Based on Changes in Membrane Potential for Screening Paralytic Shellfish Toxins in Mussels

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To prevent the consumption of bivalves contaminated with paralytic shellfish poisoning (PSP), toxin levels in seafood products are estimated by using the official mouse bioassay. Because of the limitations of this bioassay other methods of monitoring toxins are clearly needed. We have developed a test to screen for PSP toxins based on its functional activity; the toxins bind to the voltage-gated Na+ channels and block their activity. The method is a fluorimetric assay that allows quantitation of the toxins by detecting changes in the membrane potential of human excitable cells. This assay gives an estimate of toxicity, since each toxin present in the sample binds to sodium channels with an affinity which is proportional to its intrinsic toxic potency. The detection limits for paralytic shellfish toxins were found to be 1 ng saxitoxin equivalents/ml compared to the regulatory limit threshold of 400 ng/ml (equivalent to 80 microg/100 g) used in most countries. Our results indicate that this fluorescent assay is a specific, very sensitive, rapid, and reliable method of monitoring PSP toxin levels in samples from seafood products and toxic algae.