Published in

American Chemical Society, Journal of the American Chemical Society, 50(129), p. 15503-15512, 2007

DOI: 10.1021/ja071070+

Links

Tools

Export citation

Search in Google Scholar

DFT Study of the Mechanisms of In Water Au(I)-Catalyzed Tandem [3,3]-Rearrangement/Nazarov Reaction/[1,2]-Hydrogen Shift of Enynyl Acetates: A Proton-Transport Catalysis Strategy in the Water-Catalyzed [1,2]-Hydrogen Shift

Journal article published in 2007 by Fu-Qiang Shi, Xin Li, Yuanzhi Xia, Liming Zhang ORCID, Zhi-Xiang Yu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A computational study with the Becke3LYP density functional was carried out to elucidate the mechanisms of Au(I)-catalyzed reactions of enynyl acetates involving tandem [3,3]-rearrangement, Nazarov reaction, and [1,2]-hydrogen shift. Calculations indicate that the [3,3]-rearrangement is a two-step process with activation free energies below 10 kcal/mol for both steps. The following Nazarov-type 4pi electrocyclic ring-closure reaction of a Au-containing dienyl cation is also easy with an activation free energy of 3.2 kcal/mol in CH2Cl2. The final step in the catalytic cycle is a [1,2]-hydride shift, and this step is the rate-limiting step (with a computed activation free energy of 20.2 kcal/mol) when dry CH2Cl2 is used as the solvent. When this tandem reaction was conducted in wet CH2Cl2, the [1,2]-hydride shift step in dry solution turned to a very efficient water-catalyzed [1,2]-hydrogen shift mechanism with an activation free energy of 16.4 kcal/mol. Because of this, the tandem reaction of enynyl acetates was found to be faster in wet CH2Cl2 as compared to the reaction in dry CH2Cl2. Calculations show that a water-catalyzed [1,2]-hydrogen shift adopts a proton-transport catalysis strategy, in which the acetoxy group in the substrate is critical because it acts as either a proton acceptor when one water molecule is involved in catalysis or a proton-relay stabilizer when a water cluster is involved in catalysis. Water is found to act as a proton shuttle in the proton-transport catalysis strategy. Theoretical discovery of the role of the acetoxy group in the water-catalyzed [1,2]-hydrogen shift process suggests that a transition metal-catalyzed reaction involving a similar hydrogen shift step can be accelerated in water or on water with only a marginal effect, unless a proton-accepting group such as an acetoxy group, which can form a hydrogen bond network with water, is present around this reaction's active site.