Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biomechanics, 7(36), p. 905-912

DOI: 10.1016/s0021-9290(03)00081-2

Links

Tools

Export citation

Search in Google Scholar

Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Local oxygen consumption in a muscle (VO(2)) can be determined by near infrared spectroscopy (NIRS). In principle it should be possible to use this measure to validate musculoskeletal models. However, the relationship between VO(2) and external force, or between VO(2) and surface EMG, as a measure for muscle activity, is hardly known. The aim of this study was: (1) to evaluate the characteristics of the relationship between VO(2) and external moments and (2) to determine whether differences exist between the EMG-moment relationship and the VO(2)-moment relationship. Subjects (n=5) were asked to perform isometric contractions exerting combinations of elbow flexion and pro/supination moments at force levels up to 70% of their maximum. Simultaneous surface-EMG and NIRS measurements were performed on the m. biceps breve (BB) and the m. brachioradialis (BR). A linear relationship was found between EMG and VO(2). For the BB VO(2) and EMG were linearly related to both the flexion moment and the pro/supination moment. However, for the BR only a linear relationship with flexion moment was found. As expected, based on the findings above, the relationship between VO(2) and elbow flexion moment can be described by a linear equation, under the conditions of this study (isometric, and force levels up to 70%). These findings suggest that load sharing is independent of force level and that next to EMG, VO(2) can be used for the validation of musculoskeletal models.