Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biochemical and Biophysical Research Communications, 4(372), p. 935-940, 2008

DOI: 10.1016/j.bbrc.2008.05.157

Links

Tools

Export citation

Search in Google Scholar

Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunit-based anti-tuberculosis vaccine.