Published in

Elsevier, Journal of Inorganic Biochemistry, 12(98), p. 2052-2062

DOI: 10.1016/j.jinorgbio.2004.09.009

Links

Tools

Export citation

Search in Google Scholar

Synthetic analogue approach to metallobleomycins: Syntheses, structure and properties of mononuclear and tetranuclear gallium(III) complexes of a ligand that resembles the metal-binding site of bleomycin

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the peptide ligand N-(2-(4-imidazolyl)ethyl)pyridine-2-carboxamide (pypepH2) resembling a fragment of the metal-binding domain of bleomycins (BLMs), have been isolated. Reaction of pypepH2 with (Et4N)[GaCl4] and Ga(acac)3 [acac- is the acetylacetonate(-1) ion] affords the mononuclear complex [Ga(pypepH)2]Cl.2H2O (1) and the tetranuclear complex [Ga4(acac)4(pypep)4].4.4H2O (2), respectively. Both complexes were characterized by single-crystal X-ray crystallography, IR spectroscopy and thermal decomposition data. The pypepH- ion in 1 behaves as a N(pyridyl), N(deprotonated amide), N(pyridine-type imidazole) chelating ligand. The doubly deprotonated pypep2- ion in 2 behaves as a N(pyridyl), N(deprotonated amide), N(imidazolate), N'(imidazolate) mu2 ligand and binds to one Ga(III) atom at its pyridyl, amide and one of the imidazolate nitrogens, and to a second metal ion at the other imidazolate nitrogen; a chelating acac- ligand completes six coordination at each Ga(III) centre. The IR data are discussed in terms of the nature of bonding and known structures. The 1H NMR spectrum of 1 suggests that the cation of the complex maintains its integrity in dimethylsulfoxide (DMSO) solution. Complexes 1 and 2 are the first synthetic analogues of metallobleomycins with gallium(III).