Published in

Elsevier, Biochemical and Biophysical Research Communications, 2(329), p. 638-645, 2005

DOI: 10.1016/j.bbrc.2005.02.021

Links

Tools

Export citation

Search in Google Scholar

Characterization of a RAB5 homologue in Trypanosoma cruzi

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

RAB proteins are small GTPases involved in exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. RABs show a remarkable specificity in subcellular localization, so they can be used as molecular markers for studying protein trafficking in Trypanosoma cruzi, the causal agent of Chagas' disease. RAB5 is a component of early endosomes. It has been identified in kinetoplastids such as Trypanosoma brucei and Leishmania donovani. In this work, we describe the characterization of the complete coding sequence of a RAB5 gene homologue in T. cruzi (TcRAB5, GenBank Accession No. AY730667). It is present as a single copy gene, located at chromosomal bands XIII and XIV. TcRAB5 shares the highest degrees of similarity (71%) and identity (63%) with Trypanosoma brucei rhodesiense RAB5a and contains all five characteristic RAB motifs. TcRAB5 is transcribed as a single 1.5kb mRNA in epimastigotes. Its transcript was also detected in the other two forms of the parasite, metacyclic trypomastigotes and spheromastigotes. The recombinant TcRAB5 protein was able to bind and hydrolyze GTP. The identification of proteins involved in T. cruzi endo- and exocytic pathways may generate cellular compartment markers, an invaluable tool to better understand the vesicular transport in this parasite.