Dissemin is shutting down on January 1st, 2025

Published in

Soc of Chemical Engineering -- Japan, Journal of chemical engineering of Japan, 5(37), p. 622-629

DOI: 10.1252/jcej.37.622

Links

Tools

Export citation

Search in Google Scholar

Effect of Nonionic Head Group Size on the Formation of Worm-Like Micelles in Mixed Nonionic/Cationic Surfactant Aqueous Systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The phase behavior, microstructure and rheological properties of mixtures of polyoxyethylene type nonionic surfactants (C12EOn, n = 0–4) and alkyltrimethylammonium bromide cationic surfactants in water were investigated. Upon addition of C12EO3 to the aqueous cationic system at high surfactant concentration, both the interfacial curvature of aggregates and the effective cross-sectional area per surfactant molecule, aS, decrease, resulting in a hexagonal-lamellar liquid crystal phase transition. This effect becomes more pronounced as the alkyl chain-length of the cationic surfactant increases. At low surfactant concentration, addition of nonionic amphiphile to micellar solution above a particular concentration, C*, induces a rapid unidimensional micellar growth, and particularly in CTAB systems viscoelastic micellar solutions of entangled wormlike micelles are formed. With successive addition of the nonionic amphiphile ultimately a micellar to lamellar phase transformation occurs. Rheological measurements within the Wm-phase show that with decreasing EO chain-length, C* also decreases and viscosity increases more swiftly with increasing concentration of nonionic amphiphile, suggesting a rapid micellar growth. This is attributed to the decrease in aS, as predicted by a simple geometrical model.