Published in

American Institute of Physics, Applied Physics Letters, 22(91), p. 222103

DOI: 10.1063/1.2813617

Links

Tools

Export citation

Search in Google Scholar

Observation of Electric-Field Induced Ni Filament Channels in Polycrystalline NiOx Film

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

For high density of resistive random access memory applications using NiOx films, understanding of the filament formation mechanism that occurred during the application of electric fields is required. We show the structural changes of polycrystalline NiOx (x = 1–1.5) film in the set (low resistance), reset (high resistance), and switching failed (irreversible low resistance) states investigated by simultaneous high-resolution transmission electron microscopy and electron energy-loss spectroscopy. We have found that the irreversible low resistance state facilitates further increases of Ni filament channels and Ni filament density that resulted from the grain structure changes in the NiOx film.