IOP Publishing, Physical Biology, 3(8), p. 035003
DOI: 10.1088/1478-3975/8/3/035003
Full text: Download
A frequently neglected aspect of protein-protein interactions is flexibility. Small-scale fluctuations are present even in globular proteins, and alternative conformations can have a significant influence on the binding process. However, flexibility becomes highly prominent in complexes involving intrinsically disordered proteins. The importance of disordered regions in protein interactions has been recognized only relatively recently. In this survey we examine the basic properties of the complexes of disordered and ordered proteins from three different directions. The comparison of the interface properties shows that although disordered proteins can also adopt well-defined conformations in their bound form, their inherently dynamic nature is cast into their complexes. Furthermore, an overview of prediction methods indicates that disordered proteins as well as their binding regions can be recognized from the amino acid sequence by capturing the basic biophysical properties of these segments. Finally, we propose the generalization of the 'energy landscape model' for the description of complex formation that can help to put the various types of protein associations on a common ground.