Published in

American Astronomical Society, Astronomical Journal, 1(135), p. 173-181, 2007

DOI: 10.1088/0004-6256/135/1/173

Links

Tools

Export citation

Search in Google Scholar

The Stellar Mass Distribution in the Giant Star Forming Region NGC 346

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Deep F555W and F814W Hubble Space Telescope ACS images are the basis for a study of the present day mass function (PDMF) of NGC346, the largest active star forming region in the Small Magellanic Cloud (SMC). We find a PDMF slope of Gamma=-1.43+/-0.18 in the mass range 0.8-60 Mo, in excellent agreement with the Salpeter Initial Mass Function (IMF) in the solar neighborhood. Caveats on the conversion of the PDMF to the IMF are discussed. The PDMF slope changes, as a function of the radial distance from the center of the NGC 346 star cluster, indicating a segregation of the most massive stars. This segregation is likely primordial considering the young age (~3 Myr) of NGC346, and its clumpy structure which suggests that the cluster has likely not had sufficient time to relax. Comparing our results for NGC346 with those derived for other star clusters in the SMC and the Milky Way (MW), we conclude that, while the star formation process might depend on the local cloud conditions, the IMF does not seem to be affected by general environmental effects such as galaxy type, metallicity, and dust content. ; Comment: 26 pages, 7 figures, 1 table, accepted for publication in AJ