Published in

Wiley, Journal of Orthopaedic Research, 3(24), p. 508-515, 2006

DOI: 10.1002/jor.20054

Links

Tools

Export citation

Search in Google Scholar

The effect of thrombin on ACL fibroblast interactions with collagen hydrogels

Journal article published in 2006 by M. M. Murray, B. Forsythe, F. Chen, S. J. Lee ORCID, J. J. Yoo, A. Atala, A. Steinert
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Premature loss of provisional scaffold formation has been identified as one of the factors responsible for poor healing of intraarticular tissues. To address this deficiency, substitute provisional scaffolds are being developed. The function of these scaffolds can be enhanced by the addition of specific extracellular matrix proteins. In this study, it was hypothesized that the addition of thrombin to a provisional scaffold material would result in increases in cell proliferation, collagen production, and cell migration within the scaffold. These three parameters are thought to be critical components of wound healing. Gels containing fibrin and collagen supplemented with either 0, 10.5, 21, or 42 U/mL of thrombin were placed in contact with explants of tissue from the anterior cruciate ligament. The addition of thrombin stimulated cell migration at low concentrations and impaired migration at higher concentrations, and had no significant effect on cell proliferation or collagen production. The use of all concentrations of thrombin resulted in mechanically weaker gels. Thus, the use of thrombin to optimize a collagen-platelet rich plasma (PRP) provisional scaffold must be done with caution, and use of high concentrations of thrombin (>42 IU/mL) should be avoided specifically in situations where gel strength or cell ingrowth is important. Use of low concentrations of thrombin (10.5 IU/mL) may be beneficial in applications where a faster set time and enhanced cell migration are desirable and the gel mechanical strength is of secondary importance.