Published in

Nature Research, Nature Physics, 4(3), p. 235-238, 2007

DOI: 10.1038/nphys574

Links

Tools

Export citation

Search in Google Scholar

In situ evidence of magnetic reconnection in turbulent plasma

Journal article published in 2007 by A. Retinò ORCID, D. Sundkvist, A. Vaivads ORCID, F. Mozer, M. André, C. J. Owen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Magnetic reconnection is a universal process leading to energy conversion in plasmas. It occurs in the Solar System, in laboratory plasmas and is important in astrophysics . Reconnection has been observed so far only at large-scale boundaries between different plasma environments . It is not known whether reconnection occurs and is important in turbulent plasmas where many small-scale boundaries can form. Solar and laboratory measurements as well as numerical simulations indicate such possibility. Here we report, for the first time, in situ evidence of reconnection in a turbulent plasma. The turbulent environment is the solar wind downstream of the Earths bow shock. We show that reconnection is fast and electromagnetic energy is converted into heating and acceleration of particles. This has significant implications for laboratory and astrophysical plasmas where both turbulence and reconnection should be common.