Published in

Membrane Protein Structure and Dynamics, p. 179-205

DOI: 10.1007/978-1-62703-023-6_11

Links

Tools

Export citation

Search in Google Scholar

Homology Model-Assisted Elucidation of Binding Sites in GPCRs

Journal article published in 2012 by Anat Levit, Dov Barak, Maik Behrens, Wolfgang Meyerhof, Masha Y. Niv ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

G protein-coupled receptors (GPCRs) are important mediators of cell signaling and a major family of drug targets. Despite recent breakthroughs, experimental elucidation of GPCR structures remains a formidable challenge. Homology modeling of 3D structures of GPCRs provides a practical tool for elucidating the structural determinants governing the interactions of these important receptors with their ligands. The working model of the binding site can then be used for virtual screening of additional ligands that may fit this site, for determining and comparing specificity profiles of related receptors, and for structure-based design of agonists and antagonists. The current review presents the protocol and enumerates the steps for modeling and validating the residues involved in ligand binding. The main stages include (a) modeling the receptor structure using an automated fragment-based approach, (b) predicting potential binding pockets, (c) docking known binders, (d) analyzing predicted interactions and comparing with positions that have been shown to bind ligands in other receptors, (e) validating the structural model by mutagenesis.