Published in

Brill Academic Publishers, Amphibia-Reptilia, 3(30), p. 413-424, 2009

DOI: 10.1163/156853809788795173

Links

Tools

Export citation

Search in Google Scholar

Modelling Bedriaga's rock lizard distribution in Sardinia: An ensemble approach

Journal article published in 2009 by Leonardo Vignoli ORCID, Marco A. Bologna, Pierluigi Bombi, Daniele Salvi ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMany techniques for predicting species potential distribution were recently developed. Despite the international interest for these procedures, applications of predictive approaches to the study of Italian fauna distribution are exceptionally rare. This paper aimed at: (a) detecting climatic exigencies of A. bedriagae in Sardinia; (b) predicting the Archaeolacerta bedriagae Sardinian potential distribution; (c) identifying the most vulnerable Italian populations of the species. Literature and field data were utilized as presence records. Six modelling procedures (BIOCLIM, DOMAIN, ENFA, GAM, GLM, and MAXENT) were adopted. The species climatic requirements were defined using the WorldClim databank for deriving the environmental predictors. AUC and Kappa values were calculated for models validation. AUC values were compared by using Anova Monte Carlo. The best four models were combined through the weighted average consensus method for producing a univocal output. GAM and MAXENT had the best performances (respectively: AUC = 0.93 ± 0.03, Kappa = 0.77 ± 0.08; AUC = 0.93 ± 0.03, Kappa = 0.78 ± 0.07). Good results were also obtained by GLM and DOMAIN (respectively: AUC = 0.89 ± 0.04, Kappa = 0.72 ± 0.05; AUC = 0.88 ± 0.04, Kappa = 0.69 ± 0.07). BIOCLIM and ENFA gained relatively low performances (respectively: AUC = 0.78 ± 0.07, Kappa = 0.57 ± 0.14; AUC = 0.75 ± 0.06; Kappa = 0.49 ± 0.10). In Sardinia A. bedriagae is mainly influenced by seasonality, which causes the evidenced range fragmentation. Moreover, the general importance of multi-methods approaches and consensus techniques in predicting species distribution was highlighted.