Published in

American Chemical Society, Journal of the American Chemical Society, 6(131), p. 2058-2059, 2009

DOI: 10.1021/ja8088718

Links

Tools

Export citation

Search in Google Scholar

Adsorption-Desorption Induced Structural Changes of Cu-MOF Evidenced by Solid State NMR and EPR Spectroscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Adsorption-desorption induced structural changes of Cu(bpy)(H(2)O)(2)(BF(4)),(bpy) (bpy = 4,4'-bipyridine) [Cu-MOF] have been evidenced by combined NMR and EPR spectroscopy. Upon adsorption of probe molecules even at a few mbar, EPR spectra show that they are activated to form complexes at Cu(II) sites, which results in a change of the Cu-MOF's structure as indicated by a high-field shift of the (11)B MAS NMR. After desorption, both EPR and (11)B MAS NMR spectra evidenced that the structure of the Cu-MOF reversibly shifted to the original state. This observation indicates that MOFs can undergo structural changes during processes where adsorption-desorption steps are involved such as gas storage, separation, and catalysis.