Elsevier, Biochemical Pharmacology, 10(84), p. 1366-1380, 2012
DOI: 10.1016/j.bcp.2012.08.008
Full text: Download
Chemokines and their receptors play fundamental roles in many physiological and pathological processes such as leukocyte trafficking, inflammation, cancer and HIV-1 infection. Chemokine-receptor interactions are particularly intricate and therefore require precise orchestration. The flexible N-terminal domain of human chemokine receptors has regularly been demonstrated to hold a crucial role in the initial recognition and selective binding of the receptor ligands. The length and the amino acid sequences of the N-termini vary considerably among different receptors but they all show a high content of negatively charged residues and are subject to post-translational modifications such as O-sulfation and N- or O-glycosylation. In addition, a conserved cysteine that is most likely engaged in a receptor-stabilizing disulfide bond delimits two functionally distinct parts in the N-terminus, characterized by specific molecular signatures. Structural analyses have shown that the N-terminus of chemokine receptors recognizes a groove on the chemokine surface and that this interaction is stabilized by high-affinity binding to a conserved sulfotyrosine-binding pocket. Altogether, these data provide new insights on the chemokine-receptor molecular interplay and identify the receptor N-terminus-binding site as a new target for the development of therapeutic molecules. This review presents and discusses the diversity and function of human chemokine receptor N-terminal domains and provides a comprehensive annotated inventory of their sequences, laying special emphasis on the presence of post-translational modifications and functional features. Finally, it identifies new molecular signatures and proposes a computational model for the positioning and the conformation of the CXCR4 N-terminus grafted on the first chemokine receptor X-ray structure.