Published in

Wiley, Journal of Plant Nutrition and Soil Science, 1(173), p. 135-148, 2010

DOI: 10.1002/jpln.200900134

Links

Tools

Export citation

Search in Google Scholar

Effects of chromium stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes

Journal article published in 2010 by Fanrong Zeng, Shafaqat Ali ORCID, Boyin Qiu, Feibo Wu, Guoping Zhang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A hydroponic experiment was carried out to study effects of chromium (Cr) stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes differing in Cr accumulation. The results showed that Ca, Mg, Fe, and Zn ions were mainly located in cell walls and vacuoles in roots. However, large amounts of metal ions were transferred from the vacuole to the nucleus and to other functional organelles in shoots. Chromium concentrations in the nutrient solution of 50 μM and above significantly decreased Ca concentrations in the chloroplast/trophoplast, the nucleus, and in mitochondria. It further increased Mg concentrations in the nucleus and in mitochondria, as well as Zn and Fe concentrations in the chloroplast/trophoplast. These Cr-induced changes in ion concentrations were associated with a significant reduction in plant biomass. It is suggested that Cr stress interferes with the functions of mineral nutrients in rice plants, thus causing a serious inhibition of plant growth. The chemical forms of the four nutrients were determined by successive extraction. Except for Ca, which was mainly chelated with insoluble phosphate and oxalic acid, Mg, Zn, and Fe were extractable by 80% ethanol, d-H2O, and 1μM NaCl. The results indicated that these low–molecular weight compounds, such as organic acids and amino acids, may play an important role in deposition and translocation of Mg, Zn, and Fe in the xylem system of rice plants.