Published in

Taylor and Francis Group, Journal of Plant Nutrition, 13(34), p. 2006-2017, 2011

DOI: 10.1080/01904167.2011.610487

Links

Tools

Export citation

Search in Google Scholar

Variation in Phosphorus Efficiency Amongbrassicacultivars I: Internal Utilization and Phosphorus Remobilization

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plants have adapted a number of mechanisms to cope with widespread phosphorus (P) deficiency in arable lands. Crop species and even cultivars differ widely in one or more of these adaptive mechanisms hence, in P efficiency. Identification of these mechanisms is pre-requisite for long term breeding programs. Two independent experiments were conducted to study the possible mechanisms of P efficiency in Brassica cultivars. Eight Brassica cultivars (‘B.S.A.’, ‘Toria’, ‘Toria Selection’, ‘Brown Raya’, ‘Peela Raya’, ‘Dunkeld’, ‘Rainbow’, and ‘CON-1’) were selected on the basis of differences in growth under P deficiency from preliminary experiment. In the first experiment, cultivars were grown for 40 days in sand supplied either with sparingly soluble phosphate rock (PR) or soluble mono-ammonium phosphate (MAP). Cultivars differed significantly (P<0.05) for biomass production, P contents and P use efficiency. Low P availability in PR treatment resulted in significantly lower dry weights and P contents than those grown with MAP. The cultivars ‘Rainbow’, ‘Brown Raya’ and ‘Dunkeld’ accumulated more biomass (3.2 g/pot) and P contents (3.0 mg/pot) than other cultivars when grown with PR. Root dry weight was significantly correlated with shoot dry weight, shoot P content and total P content (r > 0.65) indicating significance of improved root growth for P acquisition. While in the second experiment cultivars were grown with adequate P for 30 days and then P was withdrawn from the nutrient solution by replacing fresh P free nutrient solution for 10 days. Induced P deficiency increased P contents in young leaves by two folds indicating remobilization of P from older leaves and shoot. Nonetheless cultivars varied for remobilization but differences in P remobilization could not explain the differences in P utilization efficiency among cultivars. Hence further experimentation to study root morphology, P uptake, and organic acid exudation by these cultivars in relation to P deficiency is recommended.