Published in

American Chemical Society, Analytical Chemistry, 11(81), p. 4524-4530, 2009

DOI: 10.1021/ac900522a

Links

Tools

Export citation

Search in Google Scholar

A Digital Microfluidic Approach to Proteomic Sample Processing

Journal article published in 2009 by Vivienne N. Luk, Aaron R. Wheeler
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proteome profiling is the identification and quantitation of all proteins in biological samples. An important application of proteome profiling that has received much attention is clinical proteomics, a field that promises the discovery of biomarkers that will be useful for early diagnosis and prognosis of diseases. While clinical proteomic methods vary widely, a common characteristic is the need for (i) extraction of proteins from complex biological fluids and (ii) extensive biochemical processing (reduction, alkylation and enzymatic digestion) prior to analysis. However, the lack of standardized sample handling and processing in proteomics is a major limitation for the field. The conventional macroscale manual sample handling requires multiple containers and transfers, which often leads to sample loss and contamination. For clinical proteomics to be adopted as a gold standard for clinical measures, the issue of irreproducibility needs to be addressed. A potential solution to this problem is to form integrated systems for sample handling and processing, and in this dissertation, I describe my work towards realizing this goal using digital microfluidics (DMF). DMF is a technique characterized by the manipulation of discrete droplets (100 nL – 10 L) on an array of electrodes by the application of electrical fields. It is well-suited for carrying out rapid, sequential, miniaturized automated biochemical assays. This thesis demonstrates how DMF can be a powerful tool capable of automating several protein handling and processing steps used in proteomics.