Published in

Elsevier, Synthetic Metals, 13(159), p. 1373-1380

DOI: 10.1016/j.synthmet.2009.03.013

Links

Tools

Export citation

Search in Google Scholar

The influence of polymerization time and dopant concentration on the absorption of microwave radiation in conducting polypyrrole coated textiles

Journal article published in 2009 by Akif Kaynak ORCID, Eva Håkansson, Andrew Amiet
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Temperature changes in conducting polypyrrole/para-toluene-2-sulphonic acid (PPy/pTSA) coated nylon textiles due to microwave absorption in the 8–9 GHz and 15–16 GHz frequency ranges were obtained by a thermography station during simultaneous irradiation of the samples. The temperature values are compared and related to the amounts of reflection, transmission and absorption obtained with a non-contact free space transmission technique, indicating a relationship between microwave absorption and temperature increase. Non-conductive samples showed no temperature increase upon irradiation irrespective of frequency range. The maximum temperature difference of around 4 °C in the conducting fabrics relative to ambient temperature was observed in samples having 48% absorption and 26.5 ± 4% reflection. Samples polymerized for 60 or 120 min with a dopant concentration of 0.018 mol/l or polymerized for 180 min with a dopant concentration of 0.009 mol/l yielded optimum absorption levels. As the surface resistivity decreased and the reflection levels increased, the temperature increase upon irradiation reduced.