Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Chemical Neuroanatomy, 1(11), p. 13-35

DOI: 10.1016/0891-0618(96)00119-6

Links

Tools

Export citation

Search in Google Scholar

Computer-assisted mapping of basic fibroblast growth factor immunoreactive nerve cell populations in the rat brain

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have performed a mapping of basic fibroblast growth factor (bFGF) immunoreactive (ir) glial and nerve cell populations in the male rat brain using a rabbit antibody raised against a synthetic peptide of bovine bFGF. Regional morphometric and microdensitometric analysis of the bFGF ir neuronal profiles in coronal brain sections was carried out by means of an automatic image analyser. The density and intensity of the bFGF ir glial profiles were subjectively evaluated. The bFGF immunoreactivity (IR) was detected within the cytoplasm of neurons, except within the pyramidal neurons of hippocampal CA2 region, the fasciola cinerea and the indusium griseum, where bFGF IR was present in the nucleus. In contrast, in glial cells bFGF IR was always found in the nucleus. Neuronal and glial IR was no longer observed after absorption of the bFGF antiserum with recombinant bFGF. Basic FGF IR was found in neuronal and glial cell populations throughout the brain as well as in the choroid plexus and in the ependymal cells lining the ventricles. Basic FGF ir nerve cells were found in all layers of both the neocortex and allocortex. Within the caudate putamen and the nucleus accumbens a low density of weak bFGF ir neuronal profiles was detected. The majority of the thalamic nuclei showed medium to high densities of moderate to strong bFGF ir neuronal profiles. All the hypothalamic nuclei, with the exception of the anterior and lateral hypothalamic area and of the ventral hypothalamic nucleus, contained a high density of bFGF ir profiles. The pons and the medulla oblongata were characterized by the presence of a large number of nuclei containing moderate to high densities of strong bFGF in profiles. The Purkinje cell layer of the cerebellar cortex contained a high density of moderately bFGF ir profiles. A moderate density of strong bFGF ir nerve cell profiles was observed within all the laminae of the spinal cord, except within the II and III laminae where a high density of strongly ir profiles was found. Histogram analysis of total immunoreactivity showed that the distribution of bFGF ir profiles within the telencephalon and mesencephalon tend to be similar with regard to the central tendency and spread. Using Kendall's tau, a significant correlation between intensity and density values was obtained only in the diencephalon. The cytoplasmic bFGF IR found in distinct nerve cell populations all over the rat brain and spinal cord may represent forms of bFGF which can be released from the nerve cells via non-exocytotic mechanisms in view of the absence of an intracellular signal peptide in bFGF. The presence of nuclear bFGF IR within the glial cells all over the central nervous system (CNS) suggests an intracellular function of bFGF, such as the promotion of mitogenesis and/or participation in the transcriptional regulation of various genes.