Published in

Elsevier, Polymer, 3(44), p. 565-573

DOI: 10.1016/s0032-3861(02)00812-1

Links

Tools

Export citation

Search in Google Scholar

Maleimide-epoxy resins: preparation, thermal properties, and flame retardance

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Maleimide modified epoxy compounds were prepared through reacting N-(4-hydroxylphenyl)maleimide (HPM) with diglycidylether of bisphenol-A. Triphenylphosphine and methylethylketone were utilized in the reactions as a catalyst and a solvent, respectively. The resulting compounds possessed both oxirane ring and maleimide group. The kinetics of the curing reactions of the maleimide-epoxy compounds and amine curing agents, 4,4-diaminodipheylmethane (DDM) and dicyandiamide (DICY), were studied. Incorporation of maleimide groups into epoxy resins provided cyclic imide structure and high cross-linking density to the cured resins, to bring high glass transition temperatures (179 °C) and good thermal stability (above 380 °C) to the cured resins. High char yields in the thermogravimetric analysis and high limited oxygen index values (25.5–29.5) were also observed for the cured resins to impy their good flame retardance. ; JNL0002621 JNL0003241