Dissemin is shutting down on January 1st, 2025

Published in

Springer, Plant and Soil, 1-2(407), p. 135-143, 2015

DOI: 10.1007/s11104-015-2710-3

Links

Tools

Export citation

Search in Google Scholar

Peatland vascular plant functional types affect dissolved organic matter chemistry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Northern peatlands are large repositories of carbon. Peatland vascular plant community composition has been functionally associated to a set of biogeochemical processes such as carbon cycling. Yet, we do not fully understand to what extent vascular plant functional types (PFTs) affect the quality of dissolved organic matter, and if there is any feedback on soil microbial activity. Using a longer-term plant removal experiment in a boreo-nemoral peatland in Southern Sweden, we relate the dominance of different vascular plant functional types (i.e. ericoids and graminoids) to the chemistry of the dissolved organic matter (DOM) and microbial enzymatic activities (fluorescein diacetate hydrolysis, FDA). Our results show that PFTs modifies the composition of DOM moieties, with a decrease of low molecular weight organic compounds after vascular plant removal. The decrease of enzymatic activity by up to 68 % in the plant removal plots suggests a reduction in DOM mineralization in the absence of vascular plants. Our results show that plant-derived low molecular organic compounds enhance peatland microbial activity, and suggest that an increase of vascular plant cover in response to climate change can potentially destabilize the OM in peatlands, leading to increased carbon losses.