Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 16(13), p. 7997-8018, 2013

DOI: 10.5194/acp-13-7997-2013

Links

Tools

Export citation

Search in Google Scholar

Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 13 (2013): 7997-8018, doi:10.5194/acp-13-7997-2013. ; We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies. ; ACCMIP is organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under the International Geosphere-Biosphere Programme (IGBP) and World Climate Research Program (WCRP). The authors are grateful to the British Atmospheric Data Centre (BADC), which is part of the NERC National Centre for Atmospheric Science (NCAS), for collecting and archiving the ACCMIP data. D. Shindell, G. Faluvegi and Y. Lee acknowledge support from the NASA MAP and ACMAP programs. D. Plummer would like to thank the Canadian Foundation for Climate and Atmospheric Sciences for their longrunning support of CMAM development. S. Ghan was supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The work of D. Bergmann and P. Cameron-Smith was funded by the US Dept. of Energy (BER), performed under the auspices of LLNL under contract DE-AC52- 07NA27344, and used the supercomputing resources of NERSC under contract No. DE-AC02-05CH11231. G. Zeng acknowledges NIWA HPCF facility and funding from New Zealand Ministry of Science and Innovation. The GEOSCCM work was supported by the NASA Modeling, Analysis and Prediction program, with computing resources provided by NASA’s High-End Computing Program through the NASA Advanced Supercomputing Division. The STOC-HadAM3 work made use of the facilities of HECToR, the UK national high-performance computing service which is funded by the Office of Science and Technology through EPSRC High End Computing Programme. The CICERO-OsloCTM2 simulations were done within the projects SLAC (Short Lived Atmospheric Components) and EarthClim funded by the Norwegian Research Council and ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) funded by the European Union. The MOCAGE simulations were supported by Météo-France and CNRS. Supercomputing time was provided by Météo-France/DSI supercomputing center. The CESM project (which includes CESM-CAM-Superfast, NCAR-CAM3.5 and NCAR-CAM5.1) is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. CMAP precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. We thank Robert Vet and his precipitation chemistry assessment team for making the WMO deposition dataset available prior to publication.We acknowledge the substantial efforts of the field and logistics personnel involved in collecting the ice cores including those from WAIS Divide, the Norwegian–United States Scientific Traverse of East Antarctica, and NEEM. We also thank Dan Pasteris and the other students and staff of the DRI ultra-trace ice core chemistry laboratory for help in analyzing the ice cores and the Office of Polar Programs at the National Science Foundation for supporting collection and analysis of the cores.