Published in

American Institute of Physics, Applied Physics Letters, 19(96), p. 193112, 2010

DOI: 10.1063/1.3428359

Links

Tools

Export citation

Search in Google Scholar

Defect reduction in silicon nanoparticles by low-temperature vacuum annealing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Using electron paramagnetic resonance, we find that vacuum annealing at 200 °C leads to a significant reduction in the silicon dangling bond (Si-db) defect density in silicon nanoparticles (Si-NPs). The best improvement of the Si-db density by a factor of 10 is obtained when the vacuum annealing is combined with an etching step in hydrofluoric acid (HF), whereas HF etching alone only removes the Si-dbs at the Si/SiO2 interface. The reduction in the Si-db defect density is confirmed by photothermal deflection spectroscopy and photoconductivity measurements on thin Si-NPs films.